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Abstract. Activity diagrams are widely used in the business process
modeling domain, for software documentation, and code generation. Re-
vealing the semantic differences between activity diagrams is crucial for
model evolution analysis to explore design alternatives and to detect er-
rors. Existing approaches to semantic differencing of activity diagrams
are based on complex and hard to understand translations to other prob-
lem spaces. The translations are implicit in the sense that they transform
ADs to a model in the input format of a model checker, which again en-
codes another formalism. We present a simple and explicit translation
from activity diagrams to finite automata and define the semantics of
activity diagrams as the words recognized by these automata. This en-
ables semantic differencing of activity diagrams via language inclusion
checking between finite automata. We formally define the translation
and present an implementation. The resulting simple and explicit trans-
lation increases comprehensibility of the semantic differencing operator
and reduces implementation efforts.

1 Introduction

Activity diagrams (ADs) describe how an activity or a process needs to be per-
formed. This paper considers an expressive variant of ADs with actions, branch-
ing fragments modeled with decision and merge nodes, and parallel fragments
modeled with fork and join nodes. We use the standard notations of the UML [5].
An action describes a single task to be executed as part of an activity. Control
flow nodes describe alternative (decision, merge) and parallel (fork, join) execu-
tion branches within an activity. An initial node marks where an activity starts
and a final node marks where an activity ends. Transitions describe how the
execution of an AD proceeds after visiting a node. We formally define the ab-
stract syntax of ADs and an operational semantics for ADs via a translation to
finite automata. The trace semantics of an AD is then defined as the language
recognized by the automaton resulting from translating the AD. The semantic
difference between two ADs ad1 and ad2 is defined as the set δ(ad1, ad2) of all
traces in the semantics of the AD ad1 that are no members in the semantics of
ad2. It therefore contains all execution traces possible in ad1 that are not pos-
sible in ad2. When interpreting ad1 as a successor version of ad2, the semantic
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difference δ(ad1, ad2) contains the execution traces that have been added during
the evolution from ad2 to ad1. Vice versa, δ(ad2, ad1) contains the execution
traces that have been removed during the evolution to ad1. The semantic dif-
ference can therefore effectively be used during AD evolution analysis to detect
whether execution traces have been removed or new execution traces have been
added between two successor versions. This analysis is in general not possible
with syntactic approaches to AD differencing [11], which reveal the syntactic
elements that have been changed during the evolution.

In contrast to previous work [3,11,12], this paper’s translation explicitly maps
ADs to finite automata and does not define an implicit mapping via a translation
from an AD to a model in the input format of a model checker, which encodes
a finite automaton with a semantics based on recognized words. Through the
explicit mapping our translation is more simple and thus easier to understand.
The translation is further less complex, which reduces implementation efforts. A
main enabler for the complexity reduction is that this paper’s approach uses a
smaller subclass of UML ADs [5] than previous work [3].

We formally define the translation and present an implementation based on
the language workbench MontiCore [7] and the finite automaton language in-
clusion checking tool RABIT [15]. Our contribution is a method for semantic
differencing of ADs based on a simple as well as easy to understand and imple-
ment translation from ADs to finite automata.

Section 2 presents motivating examples, before Section 3 introduces prelimi-
naries and notations as used in this paper. Then, Section 4 presents an abstract
syntax for ADs, an operational semantics based on finite automata, a denota-
tional semantics based on execution traces, and semantic differencing of ADs.
Afterwards, Section 5 presents an implementation of the differencing operator
as well as several example applications. Section 7 concludes.

2 Examples

This section motivates this paper’s method with four example ADs previously
presented in [10,11].

2.1 Example 1

Figure 1 depicts two ADs from [11]. The ADs describe workflows of a com-
pany to be executed when hiring new employees. The AD hire.v1 describes the
company’s original workflow. The AD hire.v2 describes a successor version.

In the original workflow, the employee is first registered. Then, the employee
either directly gets assigned a project before her payment is authorized, or the
employee gets a welcome package before her contact data is added to the com-
pany website, she is assigned a project, she is interviewed by the manager, and
gets a manager report, before her payment is finally authorized. The actions of
adding the employee to the company website and assigning the employee to a
project can be executed independent of each other, i.e., there is no strict order
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Fig. 1. Two activity diagrams adapted from [11].

in which the two actions have to be executed. The company decides to expli-
cate that new employees must receive keys to enter the building. The company
thus changes the workflow hire.v1 by adding the action labeled Assign Keys

as depicted in the bottom part of Figure 1.
A manager wants to understand how the syntactic changes impact the AD’s

possible execution traces. Using our method for semantic differencing reveals that
there are possible execution traces of hire.v1 that are not possible in hire.v2

and vice versa. Thus, execution traces have been removed and new execution
traces have been added. The manager gets presented that Register, Get Wel.
Package, Assign to Project, Add to Website, Manager Interview, Manager
Report, Authorize Payment is a possible execution trace of hire.v1 that is
no execution trace of hire.v2. This execution trace has been removed during
the evolution of the workflow. Vice versa, the manager is presented an execution
trace including the action Assign Keys, which is possible in hire.v2 and not
possible in hire.v1. This execution trace has been added during the evolution
from hire.v1 to hire.v2.

2.2 Example 2

Figure 2 depicts two ADs previously presented in [10]. The ADs model workflows
to be performed in an insurance company in response to an incoming claim.
The AD wf1 models the company’s original workflow. After some time, the
company decides to modify the workflow to wf2. A manager is interested in the
semantic difference between the new and the original workflow. She thus uses
our framework and gets presented that Record Claim, Check Claim, Reject
Claim, Send Declinature is a possible execution trace of the new workflow that
is not possible in the original workflow. Vice versa, the manager is interested if
execution traces have been removed during the evolution from wf1 to wf2. She
thus uses our framework again and gets presented that Record Claim, Check
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Fig. 2. Two activity diagrams adapted from [10].

Claim, Reject Claim, Send Declinature, Update Cost. Record, Close Claim

is a possible execution trace of wf1 that is not possible in wf2.

3 Preliminaries

This section introduces the notations for ε-NFAs (e.g. [8]) as used in this paper.
The empty word is denoted by ε. An alphabet is a non-empty finite set A that
does not contain the empty word ε /∈ A. We denote by A∗ the set of all finite
sequences (words) over an alphabet A, which contains the empty word ε ∈ A∗.

Definition 1. A non-deterministic finite automaton with epsilon moves (ε-NFA)
is a tuple (Q,Σ, δ,Q0, F ) where

– Q is a finite set of states,
– Σ is an alphabet,
– δ ⊆ Q× (Σ ∪ {ε})×Q is a transition relation,
– q0 ∈ Q is an initial state, and
– F ⊆ Q is a set of final states.

Let A = (Q,Σ, δ,Q0, F ) be an NFA. For all q ∈ Q, let EA(q) ⊆ Q denote the
epsilon closure of q in A, i.e., the set of states reachable from q in A by following
transitions from δ labeled with ε. It is defined as the smallest set satisfying
q ∈ EA(q) and ∀p ∈ EA(q) : ∀(s, a, t) ∈ δ : (s = p ∧ a = ε)⇒ t ∈ EA(q).
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Let n ∈ N. The automaton A accepts a word w = w1, w2, ...wn ∈ Σ∗ iff there
exists a finite sequence of states r = r0, r1, ..., rn ∈ Q∗ satisfying

1. r0 ∈ EA(q0),
2. ri+1 ∈ EA(r′) where r′ ∈ Q such that δ(ri, ai+1, r

′) ∈ δ for all 0 ≤ i < n,
3. rn ∈ F .

The language recognized by A is defined as L(A) = {w ∈ Σ∗ | A accepts w}.
There exist well-known algorithms for checking if the language recognized by an
ε-NFA is included in the language recognized by another ε-NFA [8]. We reduce
semantic differencing of ADs to language inclusion checking between ε-NFAs.

4 Activity Diagrams

This section defines the syntax and semantics of ADs as used in this paper. To
this effect, we define the abstract syntax of ADs and a translation from ADs to
ε-NFAs. The semantics of an AD is then defined as the language recognized by
the ε-NFA obtained from translating the AD.

4.1 Activity Diagram Syntax

The abstract syntax of ADs is defined as follows.

Definition 2. An AD is a tuple (L,N,A, i, F,XOR,AND,T, l) where

– L is an alphabet containing action labels,
– N is a finite set of nodes,
– A ⊆ N is a set of action nodes,
– i ∈ N is the initial node,
– F ⊆ N is a non-empty set of final nodes,
– XOR ⊆ N is a set of decision and merge nodes,
– AND ⊆ N is a set of fork and join nodes,
– T ⊆ N ×N is the transition relation,
– l : N → L ∪ {ε} is the node labeling function that is required to map each

control-flow node to the empty word, i.e., ∀n ∈ N \A : l(n) = ε,
– {A, {i}, F,XOR,AND} is a partition of N .

For an AD ad = (L,N,A, i, F,XOR,AND,T, l) and all nodes n ∈ N , we

denote by δ+ad(n)
def
= {(n, x) ⊆ T | x ∈ N} the set of outgoing transitions starting

in n. Similarly, δ−ad(n) denotes the set of incoming transitions ending in n.
The AD hire.v1 (cf. Figure 1), for instance, can be formally defined by

hire.v1 = (L,N,A, i, F,XOR,AND,T, l) with

– labels L = {Register, Assign to Project, Get Wel. Package, Add to

Website, Manager Interview, Manager Report, Authorize Payment},
– nodesN = {R,ATP1, GWP,ATP2, ATW,MI,MR,AP,D1,M1, F1, J1, i, f},
– action nodes A = {R,ATP1, GWP,ATP2, ATW,MI,MR,AP},
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– initial node i,
– final nodes F = {f},
– decision and merge nodes XOR = {D1,M1},
– fork and join nodes AND = {F1, J1},
– the transition relation T = {(i, R), (R,D1), (D1, ATP1), (ATP1,M1),

(D1, GWP ), (GWP,F1), (F1, ATP2), (F1, ATW ), (ATP2, J1), (ATW, J1),
(J1,MI), (MI,MR), (MR,M1), (M1, AP ), (AP, f)}, and

– labeling function l with l(R) = Register, l(ATP1) = Assign to Project,
l(GWP ) = Get Wel. Package, l(ATP2) = Assign to Project, l(ATW ) =
Add to Website, l(MI) = Manager Interview, l(MR) = Manager Report,
l(AP ) = Authorize Payment, and l(D1) = l(M1) = l(F1) = l(J1) = l(i) =
l(f) = ε.

Usually, the following (or even stronger) well-formedness rules apply (e.g. [1]):

Definition 3. An AD is called well-formed if, and only if, the following condi-
tions are satisfied:

– every action node has exactly one incoming and one outgoing transition,
– every XOR-node (decision or merge) and every AND-node (fork or join) has

at most one incoming transition or at most one outgoing transition,
– the initial node has no incoming and exactly one outgoing transition,
– every final node has no outgoing and exactly one incoming transition.

4.2 Activity Diagram Semantics

This section explicitly defines a mapping from ADs to ε-NFAs. The ε-NFA re-
sulting from translating an AD encodes exactly the traces modeled by the AD
under the assumption that exactly one action can be performed at a point in
time. Stated differently, no two action can be performed simultaneously. The se-
mantics of an AD is then defined as the language recognized by the ε-NFA that
it is mapped to. ADs contain action labels whereas ε-NFAs contain transition
labels. The mapping therefore inverts nodes and transitions of an AD during the
translation, i.e., the nodes of the AD correspond to transitions in the ε-NFA and
the transitions in the AD correspond to the ε-NFA’s states. The state set of the
automaton is given by the powerset of the set of transitions of the AD. Using the
powerset is necessary as an AD can reside in several nodes simultaneously (after
visiting a fork node). The set of transition labels in the ε-NFA is equal to the
set of node labels in the AD. The initial state of the automaton is the singleton
set containing the transition that has the initial AD node as source node. The
final states are exactly the singleton sets containing a transition that has a final
AD node as target node. The transition relation is defined as the smallest set
of transitions satisfying two conditions. The first condition encodes the AD’s
behavior in case it executes a node that is neither a join nor a fork node. If an
action node is executed, then the AD moves out of the executed action via the
action’s outgoing transition to the next node and outputs the action node’s label.
The AD’s execution state regarding other nodes remains unchanged. Similarly,
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Fig. 3. Reachable part of the ε-NFA obtained from translating hire.v1 (cf. Figure 1).

if the AD proceeds through a decision or merge node, its state regarding the
other nodes remains unchanged and it outputs nothing (the empty word ε). The
situation is different for fork and join nodes: An AD can only proceed through
a join or fork node if its state contains all nodes that have a transition to the
node. Further, if the AD proceeds through a fork or join node, it leaves all states
that precede the node and enters all states that the node leads to.

Definition 4. Let ad = (L,N,A, i, F,XOR,AND,T, l) be a well-formed AD.
The ε-NFA associated to ad is defined as nfa(ad) = (Q,Σ, δ, q0, F

′) where

– Q = P(T ),
– Σ = L,
– q0 = {(s, t) ∈ T | s = i},
– F ′ = {{(s, t)} ⊆ T | t ∈ F}, and
– δ ⊆ Q× (Σ ∪{ε})×Q is the smallest set satisfying the following conditions:
• Move other than fork or join:
∀X ⊆ T : ∀n1, n2, n3 ∈ N : ((n1, n2) ∈ X ∧ (n2, n3) ∈ T ∧n2 /∈ AND)⇒
(X, l(n2), (X \ {(n1, n2)}) ∪ {(n2, n3)}) ∈ δ

• Move fork or join:
∀X ⊆ T : ∀j ∈ AND : (δ−ad(j) ⊆ X)⇒ (X, ε, (X \ δ−ad(j)) ∪ δ+ad(j)) ∈ δ

The trace semantics sem(ad) of an AD ad is defined as the language recog-

nized by the ε-NFA associated to the AD ad, i.e., sem(ad)
def
= L(nfa(ad)).

As an example, Figure 3 depicts the ε-NFA obtained from translating the
AD hire.v1 (graphically illustrated in Figure 1 and formally defined in subsec-
tion 4.1) after removing the states and transitions that are not reachable from
the initial state. A possible execution trace of the AD is, for example, given by
Register, Assign to Project, Authorize Payment ∈ sem(hire.v1).

4.3 Semantic Differencing of Activity Diagrams

The (asymmetric) semantic difference δ(ad1, ad2) between two ADs ad1, ad2
is defined as the set of traces possible in the AD ad1 that are not possible in
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AD #reach. states #reach. transitions

hire.v1 15 26
hire.v2 19 36
wf1 26 57
wf2 27 76

time

δ(hire.v1, hire.v2) 89ms
δ(hire.v2, hire.v1) 138ms

δ(wf1, wf2) 116ms
δ(wf2, wf1) 173ms

Fig. 4. Number of reachable states and transitions in the NFAs resulting from trans-
lating the ADs as well as computation times for semantic differencing of the ADs.

the AD ad2, i.e., δ(ad1, ad2) = sem(ad1) \ sem(ad2). With the explicit map-
ping from ADs to ε-NFAs, reuse of well-known constructions from automata
theory [8] is possible. It holds that δ(ad1, ad2) = ∅ iff sem(ad1) ⊆ sem(ad2),
which is again equivalent to L(nfa(ad1)) ⊆ L(nfa(ad2)). We can thus reuse
well-known techniques for language inclusion checking and counterexample gen-
eration for ε-NFAs, which are two well-studied decidable problems. For example,
semantic differencing of hire.v1 and hire.v2 yields that Register, Get Wel.,
Package, Assign to Project, Add to Website, Manager Interview, Manager
Report, Authorize Payment ∈ δ(hire.v1, hire.v2) is an execution trace of the
AD hire.v1 that is no execution trace of the AD hire.v2.

5 Implementation and Usage

We have implemented a prototype for the semantic differencing operator using
the language workbench MontiCore [7] and the finite automata language inclu-
sion checking tool RABBIT [15]. We developed a MontiCore modeling language
for ADs, and a translation to finite automata in the BA format, which is the
input format of RABIT. The tool as well as this paper’s examples are available
online [16]. The left table in Figure 4 summarizes the sizes of the NFAs result-
ing from translating the ADs presented in Section 2 after eliminating epsilon-
transitions as well as removing unreachable states and transitions. The right
table summarizes the computation times reported by RABIT after applying the
semantic differencing operator. All checks were executed using RABIT 2.4 on a
computer with a 3.0 GHz Intel Core i7 CPU, 16 GB Ram, and Windows 10. The
NFA obtained from translating the AD wf2, for example, contains 27 states and
76 transitions that are reachable from the initial state (cf. left table in Figure 4).
Checking whether δ(wf2, wf1) = ∅ and computing a witness w ∈ δ(wf2, wf1)
took 173ms (cf. right table in Figure 4). We conclude that this paper’s transla-
tion provides promising results. However, the tool was only applied to a small set
of ADs. Therefore, the results are not generalizable: The tool’s execution time
may strongly differ when increasing the size of the input ADs.

6 Related Work

Semantic differencing of ADs is introduced in [11]. In this approach, the in-
put ADs are translated to models in the input language of the SMV model
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checker [14,17] using the translation described in [12]. These models then en-
code finite automata that correspond to the ADs. The translation from ADs to
SVM models is rather complicated. Further, the overhead produced by the trans-
lation steps from ADs to SVM models and from SMV models to finite automata
causes additional overhead in contrast to directly translating ADs to finite au-
tomata. The overhead adds unnecessary complexity to the translation and thus
makes the translation hard to understand. In contrast, our translation from ADs
to finite automata is direct and simple and therefore easy to understand. The
framework presented in [11] has been extended in [13] for summarizing elements
in the semantic difference between two ADs based on equivalence classes defined
on the set of possible traces. The idea is to present only one representative of
an equivalence class to a user. The summarization technique is easily integrable
into this paper’s framework. The framework presented in [10] can be used to
detect which syntactic changes between two different versions of an AD induce
a concrete witness. The application to ADs as presented in [10] is based on
the semantic differencing operator of [11]. Using the techniques of [10] with the
semantic differencing method presented in this paper is directly possible. The
translation from ADs to SMV models of [11] is inspired by a similar translation
defined in [3]. The translation defined in [3] is also more complicated than our
direct translation to finite automata. Further, the scope of [3] is symbolic model
checking of ADs, whereas this paper focuses on semantic differencing.

Other direct translations from ADs and business process models to finite
automata focus on deadlock detection [19,20]. However, the translations do not
result in automata that represent the set of execution traces of the input ADs.
Further, the translations are more complex than our translation. With minor
adjustments, this paper’s translation can also be used for deadlock detection by
changing the accepting states of an automaton resulting from translating an AD.

Other semantics definitions for ADs are based on Petri nets [18], on the
system model [4] for characterizing object oriented systems as defined in [2], or
on the notion of step [9] inspired by the popular STATEMATE semantics for
statecharts [6]. In contrast, this paper defines an operational semantics based
on a mapping to ε-NFAs and a denotational semantics based on the language
recognized by the resulting ε-NFAs.

7 Conclusion

We formally defined an abstract syntax of an AD variant. Based on this, we pre-
sented an operational semantics for ADs via a translation from ADs to ε-NFAs
and a denotational semantics given by the language recognized by these ε-NFAs.
This enabled to reuse well-known algorithms for language inclusion checking
between ε-NFAs for semantic differencing of ADs. We presented a tool proto-
type and applied the semantic differencing operator to four example ADs, which
showed that the differencing operator yields promising results. The translation
enables a comprehensive and easy to implement method for semantic differencing
of ADs, which ultimately facilitates semantic AD evolution analysis.
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2. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Definition of the UML System
Model. In: UML 2 Semantics and Applications. John Wiley & Sons (2009)

3. Eshuis, R.: Symbolic Model Checking of UML Activity Diagrams. ACM Trans.
Softw. Eng. Methodol. 15(1) (2006)
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