Towards Hybrid Model Persistence

Alfa Yohannis¹ Horacio Hoyos Rodriguez*¹ Fiona Polack**² Dimitris Kolovos¹

¹Department of Computer Science, University of York, United Kingdom ²School of Computing and Maths, Keele University, United Kingdom

{ary506, dimitris.kolovos}@york.ac.uk
 *horacio_hoyos_rodriguez@ieee.org
 **f.a.c.polack@keele.ac.uk

Models and Evolution@MODELS 2018 Tuesday, 16 October 2018 Copenhagen, Denmark

Change-based Persistence (CBP) & State-based Persistence (SBP)

```
1 session 1
                                     <uml:Package xmi:id="1" name="X">
                                        <packagedElement</pre>
  create p1 type Package
                                           xsi:type="uml:Class"
  set p1.name to "X"
                                           xmi:id="3" name="C"/>
                                    </unl:Package>
4 create c1 type Class
5 set c1.name to "A"
 create c2 type Class
7 set c2.name to "B"
8 add c1 to p1.packagedElement
  add c2 to p1.packagedElement
10 session 2
11 set c2.name to "C"
12 remove c1 from p1.children
13 delete c1
```

Introduction

• Model **Change-Based Persistence (CBP)** persists the complete history of changes of a model instead of its eventual state.

Main Goals

 Use the persisted changes to optimise model comparison, merging, and management (out of the scope of the paper)

 Support common text-based Version Control Systems (e.g. Git, SVN) to persist changes

Support collaborative modelling

• Challenge: Loading Time

State-based Persistence (SBP)

The eventual state of the model (time stamp 7) persisted in XMI:

Change-based Persistence (CBP)

Change-based vs. State-based Persistence

- **Notable Advantages** of change-based over state-based persistence:
 - Speed up incremental model management activities
 - Enable novel model analytics
 - Faster model comparison and merging
- **Drawbacks** of change-based over state-based persistence:
 - Ever-growing of model files (size)
 - Longer loading times

Change-based vs. State-based Persistence

Dimesions	Change-based	State-based
Load Time	_	+
Save Time	+	_
Comparison Time	+	
Storage Space		+

Introduce **hybrid model persistence** to address the **model loading time space** at the cost of additional space

Previous Work

- Loading/replaying all events is **not efficient**
- Loading optimisation of change-based models
 - **Ignoring events** that have no effect on the eventual state of a change-based model
 - The optimisation only save up to around 50% of the unoptimised loading
 - The loading time is still **outperformed by** state-based models (less than 10% of the un-optimised loading)

Optimised Change-based Persistence

Related Work

- RDBMS & NoSQL model persistence
 - Lazy loading
 - i.e. CDO, Morsa, NeoEMF
- Hybrid model persistence?

Related Work

- EMFStore uses hybrid persistence approach:
 - Supports different backends
 - No support for common version control systems (VCS), i.e. Git, SVN to persist changes
 - Restricted to its own VCS

The Mechanism of Hybrid Model Persistence

Hybrid Model Persistence Implementation

Evaluation

- Change-based Model Dataset was derived from version control repositories:
 - UML2 models of the BPMN2 project
 - UML2 models of the Epsilon project
 - ModiscoXML models of the Wikipedia's United States article
- Evaluation on:
 - Space Usage
 - Load Memory
 - Load Time
 - Save Memory
 - Save Time

Evaluation: Space Usage

Case		Epsilon]	BPMN2		V	Vikipedia	a
Generated From	940 commits		192 commits		10,187 versions				
Type	XMI	NeoEMF	CBP	XMI	NeoEMF	CBP	XMI	NeoEMF	CBP
Element Count	88,020	88,020		62,062	62,062		13,112	13,112	
Event Count		_	4.3 m		_	1.2 m		_	62.3 m
Space	9.44	188	406	6.55	134	109	1.28	31.8	5.85
Size	MBs	MBs	MBs	MBs	MBs	MBs	MBs	MBs	GBs
Average	112	2	98	110	2	92	102	2	98
Space	bytes/	$\mathrm{KBs}/$	bytes	bytes/	$\mathrm{KBs}/$	bytes	bytes/	$\mathrm{KBs}/$	bytes
Size	element	element	<u> </u>	element		/	element	element	/event

m = million events, MB = Megabytes, KB = Kilobytes

Evaluation: Load Memory

Evaluation: Load Time

Evaluation: Save Memory

Evaluation: Save Time

Detecting Previous Versions' Deleted Elements: UML2 Models of Epsilon Project

Versions	Element Counts	Delta Elements (from ver. 8)	Event Counts	Delta Events (from ver. 8)
008	25,993	0	90,888	0
044	31,240	5,247	166,659	75,771
181	34,196	8,203	250,073	159,185
388	48,482	22,489	332,315	241,427

Conclusions and Future Work

Conclusions

- Proposed a hybrid model persistence approach
- Evaluated its impact on storage space usage and time and memory footprint for model loading and saving
- The hybrid model persistence provides benefits on model loading time
- Acceptable trade-off on memory footprint and storage space usage

• Future Work:

 Utilise the persisted changes to optimise model comparison, merging, and management