

DB

CP

Male Female

PersonDB

Person

name : String

0..* persons

Member

name : String

FamilyDB

Family

name : String

0..* families

0..1
mum

0..*
daughters

0..1
dad

0..*
sons

fdb : FamilyDB

families
single-variant model

transformation

as : Member

name = “Ann"

mum

sf : Family
name = "Smith"

bs : Member
name = “Ben"

dad

DB ˄ P DB ˄ P

DB

if p.familyNotExists()

fam <- createFamily()

fam.insertAsParent(p)

else

if fam.parentNotExists()

fam.insertAsParent(p)

else

fam.insertAsChild(p)

bs : Male

name = “Ben Smith"

as : Female

name = “Ann Smith"

pdb : PersonDB

persons persons

annotated
multi-variant
target model

mt

annotated
multi-variant
source model

ms

multi-variant model
transformation (MVMT)

single-variant
model trans-

formation

Filter

(single-variant)
target model

m‘t

Filter

(single-variant)
target model

m‘‘t

(single-variant)
source model

m‘s

mtms

transfer
variability

annotations

multi-variant
source model single-variant model transformation

multi-variant
target model

variability
annotations

reuse

 no need to rewrite transformation

SVMT
+

a posteriori

trace

bs : Male bs : Member: M2M

bs : Male

sf : Family

bs : Member

: M2M

[Westfechtel and Greiner 18]

SVMT
as : Female

name = “Ann Smith"
as : Member

name = “Ann"

mum

sf : Family

name = "Smith"

Incomplete Trace

Generation-complete / Complete Trace
SVMT

bs : Male

name = “Ben Smith"
bs : Member

name = “Ben"

dad

sf : Family

name = "Smith"

as : Female as : Member: F2M

as :Female as : Member: M2M

Incomplete Trace

Generation-complete Trace

as : Female
sf : Family

as : Member

: M2M

Complete Trace
Context Element

Proved to achieve
commutativity

not always,
only if rule applications are:

as : Female

sf : Family

as : Member

: M2M

- Functional: result determined

uniquely by rule match

- Monotonic: only adding (target)

elements

- Local: effect only depends on match

- Extensible: rules applicable to same

match in any model

- Confluent: order of rule application

irrelevant

[Westfechtel and Greiner 18]

mt

ms

bs : Male

name = “Ben Smith"

as : Female

name = “Ann Smith"

pdb : PersonDB

persons persons

fdb : FamilyDB

families

Trace-based
MVMT

as : Member

name = “Ann"

mum

sf : Family
name = "Smith"

bs : Member

name = “Ben"

dad

DB ˄ P DB ˄ P

DB

DB ˄ P

DB ˄ P

DB

DB ˄ P ˄
DB ˄ P

pdb : PersonDB : FamilyDB fdb : FamilyDBSVMT

DB

CP

Filter Filter

ms mt

DB

DB ˄ P

bs : Male

name =

“Ben Smith"

DB ˄ C

ts : Male

name =
"Tom Smith"

pdb : PersonDB

persons persons

fdb : FamilyDB

families

Filter:

DB ˄ ¬𝐏 ˄ C

ts : Male

name =
"Tom Smith"

pdb : PersonDB

persons

fdb : FamilyDB

sf : Family

name = "Smith"

families

ts : Member

name = "Tom"

dad

SVMT

MVMT

fdb : FamilyDB

ts : Member

name = "Tom"

DB ˄ P ˄
DB ˄ C

sons

DB ˄ Psf : Family

name = "Smith"

bs : Member

name = „Ben"

DB ˄ P

dad

DB

DB ˄ ¬𝐏 ˄ C

Filter:

fdb : FamilyDB

families

SVMT

ts : Member

name = "Tom"

sons

sf : Family

name = "Smith"

bs : Member

name = „Ben"

dad

bs : Male

name =
“Ben Smith"

ts : Male

name =
"Tom Smith"

pdb : PersonDB

persons persons

fdb : FamilyDB

families

SVMT

bs : Member

name = „Ben"

sons

sf : Family

name = "Smith"

ts : Member

name = „Tom"

dad

if p.familyNotExists()

fam <- createFamily()

fam.insertAsParent(p)

else

if fam.parentNotExists()

fam.insertAsParent(p)

else

fam.insertAsChild(p)

bs : Male

name =
“Ben Smith"

ts : Male

name =
"Tom Smith"

pdb : PersonDB

persons persons

confluent

mt

DB

DB ˄ P

bs : Male

name =
“Ben Smith"

ts : Male

name =
"Tom Smith"

pdb : PersonDB

persons persons

DB ˄ C

fdb : FamilyDB

families

Reused SVMT

ts : Member
name = "Tom"

sons

sf : Family

name = "Smith"

bs : Member

name = "Ben"

dad

DB ˄ P
DB ˄ C

•

•

•

DB

mt

DB

DB ˄ P

bs : Male

name =
“Ben Smith"

ts : Male

name =
"Tom Smith"

pdb : PersonDB

persons persons

DB ˄ C

fdb : FamilyDB

families

Reused
SVMT ts : Member

name = "Tom"

sons

sf : Family

name = "Smith"

bs : Member

name = „Ben"

dad

DB ˄ P DB ˄ C

Element visible if

All elements directly necessary for its existence AND

At least ONE of elements needing its existence

are visible

DB ∧
(DB ˄ P

∨
DB ˄ C)

DB

m‘tm‘s

ms mt

DB

DB ˄ P

bs : Male

name =
“Ben Smith"

DB ˄ C

ts : Male

name =
"Tom Smith"

pdb : PersonDB

persons persons

fdb : FamilyDB

families

DB ˄ ¬𝐏 ˄ C

ts : Male

name =
"Tom Smith"

pdb : PersonDB

persons

fdb : FamilyDB

sf : Family

name = "Smith"

families

ts : Member

name = "Tom"

sons

Incremental
SVMT

Reused
SVMT

Filter:

ts : Member

name = "Tom"

sons

sf : Family

name = "Smith"

bs : Member

name = "Ben"

dad

1

2

mt

DB

DB ˄ P

bs : Male

name =
“Ben Smith"

DB ˄ C

ts : Male

name =
"Tom Smith"

pdb : PersonDB

persons persons

fdb : FamilyDB

families

Filter:

DB ˄ ¬𝐏 ˄ C

ts : Male

name =
"Tom Smith"

pdb : PersonDB

persons

fdb : FamilyDB

sf : Family

name = "Smith"

families

ts : Member

name = "Tom"

sons

Incremental
SVMT

MVMT

ts : Member

name = "Tom"

DB ˄ C

sons

sf : Family

name = "Smith"

bs : Member
name = "Ben"

DB ˄ P

dad

DB

DB ˄ ¬𝐏 ˄ C

Filter:

fdb : FamilyDB

sf : Family

name = "Smith"

families

ts : Member

name = "Tom"

sons

DB ∧
(DB ˄ P

∨
DB ˄ C)



