
Relaxing Metamodels for Model Family Support
Sanaa Alwidian

University of Ottawa
School of EECS
Ottawa, Canada

salwidia@uottawa.ca

Daniel Amyot
University of Ottawa

School of EECS
Ottawa, Canada

damyot@uottawa.ca

ABSTRACT

A model family regroups related models that vary along some dimen-

sion such as time or product in (software) product lines. A model
family can be captured as a “150% model” that merges the family
members, while enabling the extraction of the individual models.
However, this 150% model may no longer conform to the original
metamodel of the family members. This paper focuses on the evolu-
tion of a language’s metamodel to accommodate both the original
models and the 150% model. In particular, it aims to define a tech-
nique that minimally relaxes the metamodel constraints related to

multiplicities of attributes and association ends in order to enable
conformance. The paper uses illustrative examples from two model-
ing languages (UML class diagrams and the Goal-oriented Require-
ment Language) to describe the problem and to explore potential
approaches for metamodel relaxation. While early results are promis-
ing, there are important challenges remaining to balance conflicting
forces at play, e.g., having a minimal relaxation (such that existing
analysis techniques can be easily adapted for the 150% model) and

predicting where relaxation is needed in the metamodel.

CCS Concepts

Model-driven software engineering; Software product lines.

Keywords

Conformance; constraint relaxation; evolution; metamodel; model-
driven engineering; model family.

1. INTRODUCTION
Over the last years, Model-Driven Engineering (MDE) has gained

significant importance and popularity as a matured discipline that has

been applied in a wide array of academic and industrial domains [1].

At the core of MDE is the use of two interrelated artefacts: metamod-
els and models. A model is said to conform to (or instantiates) its
metamodel if the former obeys the rules and constraints imposed by
the metamodel. In a sense, a metamodel describes the abstract syntax

and the static semantic of modeling languages [2]. In addition, Met-

amodels impose a significant number of rules (e.g., the concepts to be
used) and constraints (e.g., multiplicities) that govern how models
should be created.

MDE (meta)models must be managed as they usually evolve over

time. In the literature, a well-addressed aspect of MDE evolution is

the metamodel evolution and model co-evolution [3]-[7]. In these

approaches (Figure 1), model evolution from M to M’ is carried out
after metamodel evolution from MM to MM’. However, to the best
of our knowledge, there is a lack of approaches that attempt to
evolve/change metamodels in response to model evolution. We ini-
tially refer to this context as the model-triggered metamodel evolu-

tion problem. The general description of this problem (Figure 2) is
characterized as: If a model M (that conforms to a metamodel MM)

evolves over time, resulting in a new model version M’ that is no

longer conforming to the original metamodel MM, how should we

extend MM (ideally with the least amount of changes) into MM’, in

order for M’ to be conform to MM’?

A model family regroups a set of related models that evolve, for ex-
ample, over time. Another common source of model families is found
in (software) product lines, where different versions/variations of a
product can exist without necessarily being caused by some evolution
over time. A model family can be captured as a 150% model which
consists of the union of the model elements from all valid family

members [8], aggregated in a way that enables the extraction of an

individual model. Such 150% models are mainly used in the context
of model-based product lines, where products are derived using nega-

tive variability by removing artefacts from the family model accord-

ing to a given feature configuration [9].

The general problem in Figure 2 allows for individual models to be
non-compliant to the original metamodel, MM (e.g., by using a class
or association not supported in the metamodel). However, for model
families, this paper assumes that all family members conform to the

same metamodel. In this context, one important observation is that
even if each family member conforms to the original metamodel,
there is still no guarantee that the 150% model aggregating all indi-
vidual models will conform to the original metamodel. In this case,

we end up having an invalid/ill-formed 150% model that requires us
to revisit the original metamodel and evolve it in a way that re-
establishes conformance, such that family members and the 150%
models comply to the evolved metamodel. Another interesting obser-
vation here is that having new members in a model family does not
require additions, deletions, or modifications of concepts to the origi-
nal metamodel. This means that the resulting metamodel needs to be
only relaxed (in terms of its constraints) rather than extended. In a
model family context, the general problem (Figure 2) can be substan-

tially simplified and specified as: If models M0...Mn (that conform to

a metamodel MM) are aggregated, resulting in a new model M150

that is no longer conforming to the original metamodel MM, how

should we extend MM (ideally with the least amount of changes) into

MM150, in order for M150 as well as M0..Mn to be conform to MM150?
Figure 3 illustrates this problem.

This paper illustrates and discusses this model family-specific meta-
model evolution problem (Figure 3) and proposes an initial solution

called Metamodel Relaxation (MeRe), while highlighting remaining
challenges. The remainder of this paper is organized as follows: Sec-
tion II discusses the motivation and scope of this work. Section III

Figure 1. Metamodel (MM)

evolution and model (M)

co-evolution problem

Figure 2. Model-triggered met-

amodel (MM) evolution prob-

lem (general)

provides three illustrative evolution scenarios. The proposed ap-
proach is discussed in Section IV. Section V discusses how analysis
can be conducted on 150% models. Related work is presented in
Section VI. Finally, Section VII concludes and provides our future
plans towards solving the model family-specific problem.

Figure 3. Model family-specific metamodel evolution problem

2. MOTIVATION AND SCOPE
Our main motivation comes from our experience using goal models
for modeling regulations, in collaboration with Transport Canada.

Regulators have regulations for different types of parties (say, air-
ports of different sizes). Trying to model these different regulations,
for analysis or compliance purposes, we ended up requiring different

goal models [9]-[11]. We tried to capture all variants with one model,

using the Goal-oriented Requirement Language (GRL) [12], to min-

imize maintenance problems, but ended up with metamodel-
conformance issues because the language did not allow us to capture
the family with one unified model. This is an issue along the product
dimension, which is not limited to GRL but is common to most mod-
eling languages. We then realized that similar problems occur along
the time dimension when a model evolves. If a product has many
versions over time, and if we want to analyze all versions (say, before

releasing a patch that would affect all versions), a model representing
the family (i.e., a 150% model) becomes necessary to allow reason-
ing about all members at once instead of reasoning about each mem-
ber individually. However, the concern here is not the construction of
the 150% model itself. Rather, the challenge emerges when a 150%
model violates conformance with the original metamodel, MM. In
this case, we need to relax MM into MM150 to ensure that this 150%
model is representable. A minimal relaxation is desirable in this con-

text so as to minimize modifications to existing tools and analysis
approaches.

The main focus of this work is on the challenge of inferring the met-
amodel of a model family from the structure of the metamodel of its
members through a minimal set of constraint relaxations. We are not
dealing with the more general problem of inferring a metamodel from
a collection of models that conform to different metamodels (i.e., our
member models use the same language). Also, we are not dealing

with a dynamic metamodel co-evolution upon changes; generating a
new metamodel each time there is a new member added to the family
is not practical, as this would imply developing new tools (for pro-
ducing, editing, analyzing, and transforming 150% models) each
time. We are also not looking at language-specific solutions (e.g.,
through the use of metadata and user links in GRL). The long-term
challenge is hence to predict the locations where metamodel relaxa-
tions are needed, without relaxing too much so existing tools and
techniques would require a minimum of adaptation. Our hope is to

develop tools for the relaxed language only once. This research aims
to answer the following research question:

RQ1: How can we minimally relax a metamodel to support the ag-
gregation of members of a model family in a way that enables the
generation of all (and only) individual members?

RQ2: How can we predict where relaxation is needed (relaxation
points) in the original metamodel, for all potential 150% models?

RQ3: What kinds of analyses can be conducted on model families to
reason on all members of a 150% model?

The following section provides concrete evolution scenarios further
illustrating the problem.

3. SAMPLE EVOLUTION SCENARIOS
This section provides three illustrative examples from two modeling
languages: The Goal-oriented Requirement Language (GRL) and
UML class diagrams. These examples serve as evidence for the need
to relax some of the metamodel multiplicities and other constraints
(RQ1).

3.1 Different GRL Actors with the Same Goal
In this section, an evolution scenario for simple GRL models is giv-

en. GRL is part of the User Requirements Notation standard [12],

[13]. As shown in Figure 4.a, the first version of the GRL model

represents an actor (ActorA) containing an intentional element of
type goal (SomeGoal). Let us assume that this model evolves over

time, such that SomeGoal is moved from ActorA to ActorB (or when
ActorA is replaced by ActorB). The evolved version is shown in
Figure 4.b. Each of the model versions, separately, conforms to the
metamodel excerpt represented in Figure 4.c, as an intentional ele-
ment may be included by 0 or 1 actor. However, if we want to aggre-
gate both models into one 150% model to represent their model fami-
ly, the resulting 150% model will not conform to the current meta-
model. This is because an intentional element (SomeGoal) cannot be

contained by two actors. This violates the multiplicity constraint
circled in the metamodel excerpt (Figure 4.c).

(a) Version 1

(b) Version 2

(c) Extract of the GRL metamodel

Figure 4. First GRL example: SomeGoal moves from ActorA to

ActorB, with relevant GRL metamodel elements

DecompositionType

AND

XOR

IOR

<<enumeration>>
IntentionalElementType

Softgoal

Goal

Task

Resource

Belief

<<enumeration>>

GRLLinkableElement

ElementLink

0..*

1

linksDest
0..*

dest1

0..*

1

linksSrc
0..*

src 1

GRLContainableElementActor 0..*0..1

elems

0..*

actor

0..1

IntentionalElement

type : IntentionalElementType

decompositionType : DecompositionType = AND

One way to re-establish conformance is to relax the multiplicity con-
straint of the actor association end to be (0...*). The purpose of this
relaxation is to allow different actors in different model versions to
contain the same intentional elements. Such new and relaxed MM150
metamodel would hence allow the 150% model (M150) and the indi-

vidual family members (versions 1 and 2) to be conform.

3.2 GRL Goals with Multiple Links

The example in Figure 5 shows another evolution scenario in GRL.
In the first version (Figure 5.a), a goal (GoalA) is decomposed into
two intentional elements of type task (Task1 and Task2). Let us as-
sume this model evolves such that the type of link that associates
GoalA with Task2 changes from a decomposition link to a contribu-
tion link (as shown in Figure 5.b). Decompositions and contributions
are two different sub-types of ElementLink in the metamodel of Fig-

ure 4.c

(a) Version 1

(b) Version 2

(c) 150% model

Figure 5: (a) Version 1: GoalA and Task2 with decomposition

link (b) Version 2: GoalA and Task2 with Contribution Link (c)

150% model that regroups both models

The 150% model that aggregates both models is shown in Figure 5.c.
However, this 150% model cannot be represented by the original
metamodel because of an existing (OCL) constraint stating that any
pair of IntentionalElements can be connected by at most one Ele-

mentLink (Figure 4.c.). Hence, it is not allowed to have both a de-
composition link and a contribution link between GoalA and Task2.
Therefore, to support the representation of such 150% models, the
OCL constraint of the original metamodel MM needs to be relaxed
(or removed) in the evolved metamodel MM150 to allow more than
one element link to connect the same pair of intentional elements in
the aggregated M150 family model (Figure 3). In addition, as shown
in Figure 5.c, we need to distinguish the elements in the 150% model

that belong to different versions of models. We annotate these ele-
ments with information about version numbers (for example
<<v1>>) to indicate that this particular element is part of only ver-
sion 1 of the model. The version-based annotations are of particular
importance to facilitate the extraction of individual models from the
150%. The absence of such annotation means that all versions (i.e.,
all members of the family) include that model element. Annotations
are directly supported with “metadata” attached to any model element

in GRL. However, should an annotation mechanism not be available
in the source modeling language, the relaxed MM150 metamodel
may also need to be extended to include such a mechanism.

3.3 UML Attributes with Multiple Types

This third evolution scenario focuses on UML class diagrams [14]

Let us assume that the first version (Figure 6.a) of class ClassOne has
an attribute AttribOne of type int, as well as an operation OprOne,
with argument arg1 of type real, that returns a parameter of type real.
This class evolves to version 2 (Figure 6.b) such that the type of At-

tribOne becomes real in-stead of int, and the operation’ parameter
and return data types become int (instead of real). These two versions
are aggregated into a 150% model, illustrated in Figure 6.c, where
version annotations are also used on attributes and operations.
Having multiple operations with the same names but different argu-

ment types is allowed in UML. However, UML enforces stronger
constraints on attribute names. The resulting 150% model violates the
UML standard metamodel since the latter does not support the repre-
sentation of one attribute with multiple data types. In order to re-
establish conformance, the multiplicity constraint related to attributes
could be relaxed in UML such that attributes would be allowed to
have many types instead of only one.

Figure 6. Two UML classes and their resulting 150% model

3.4 Observations

Based on the three previous evolution scenarios, there are some po-
tential partial answers that can be observed. Regarding the first part
of RQ1, i.e., “How can we minimally relax a metamodel to support
the aggregation of members of a model family?”, we conjuncture that
this can be done through relaxing multiplicity constraints of associa-

tion ends and attributes, as well as external (OCL) constraints on the
metamodel. Constraint relaxation also ensures that the original indi-
vidual models (family members) remain conform to the new meta-
model. Regarding the second part of the question, i.e., “…in a way
that enables the generation of all (and only) individual members?”,
we conjuncture that the explicit tagging of versions in the aggregate
model enables the reconstruction of the original models (the family
members) and prevents the generation of other hybrid models.

4. METAMODEL RELAXATION FOR

MODEL FAMILIES
This section discusses our proposed approach, MeRe, for metamodel
relaxation triggered by model evolution in a model family context.
MeRe proposes four phases for enabling metamodel relaxation: mod-

el aggregation, change detection, non-conformance detection, and
metamodel relaxation inference. An overview of the MeRe approach
is given in Figure 7 and its details are discussed in the next sections.

4.1 Phase 1: Model Aggregation

The goal of this phase is to aggregate the various models of a model
family into one single model, M150. Let M0 be the initial version of a
model that conforms to MM and evolves over time or across product
variants into several versions, M1, M2, M3, etc. (see Figure 7). The set
of versions, V, is V= {M0, M1, M2... Mn}, (where n is the number of

modified versions of a particular model M0). M150 is the union of all

elements in all models of V. The union of models at an element level
is defined as follows. Mx is a tuple {Ex, Lx} with a set of elements Ex=
{Ex

1, E
x
2, E

x
3...,E

x
i}, such that Ex

1 identifies the first element of ver-
sion x of the model, and so on. Mx also contains a link set Lx, where

Lx ⊆ Ex × Ex. Lx
a-b denotes a link between elements a and b of model

Mx. The union of two models Mx and My is defined in equation 1:

�� ∪�� � ���� ∪ ��	, ��� ∪ ��	�, 0≤�≤�, 0≤�≤	�				�1�

Therefore, M150 is the union of all elements and all links of models
in V, as defined in equation 2:

M150 = ⋃ ���
��� (2)

4.2 Phase 2: Change Detection

In this phase, changes among models are detected through the use of
M150, whose elements can now be extended with a delta (∆) annota-
tion. To illustrate the basic idea of this phase, we take as an example
the evolution scenario captured in Figure 5, where we consider each
model version as a set of elements. For instance, version 1 of the

model consists of: GoalA, Task1, Task2, a decomposition link be-
tween GoalA and Task1 and another decomposition link between
GoalA and Task2. We refer to these elements and links as: E1

1, E
1

2,

E1
3, LE

1
1-E

1
2 and LE

1
1-E

1
3, respectively. Therefore, version 1 of the

model can be denoted as: M1= {E1
1, E

1
2, E

1
3, LE

1
1-E

1
2, LE

1
1-E

1
3}. Fol-

lowing the same principle, version 2 of the model would be repre-
sented as M2= {E2

1, E
2

2, E
2
3, LE

2
1-E

2
2, LE

2
1-E

2
3
∆}, where the ∆ denotes

a change in the link type from M1 to M2 (for example, a decomposi-

tion link becomes a contribution link). This delta could be inferred by
calculating the difference between M1 and M2, Diff (M1, M2), using,

for example, the approach proposed by Rivera et al. [15]. M150 is the

union of models at the element level, hence M150= {E1, E2, E3, LE1-E2,
LE1-E3, LE

2
1-E

2
3
∆}. Note that in M150, we omit the superscript numbers

(except for the last link) that refers to model versions to which ele-
ments and links belong. This is because these elements belong to
both models M1 and M2. Therefore, there is no need to annotate them
with the version number.

The purpose of this phase is to detect and extract pairs of elements
that have changed, denoted as Ei and Ei

∆. These pairs of changes are
taken as an input to the next phase.

4.3 Phase 3: Non-Conformance Detection

In this phase, conformance between the original metamodel MM and

the M150 model is verified. This is done by checking if the co-
existence of change pairs (obtained in phase 2) in the same model
could cause a violation of association/attribute multiplicities or other
external (OCL) constraints of MM. For instance, if two different links
exist between the same pair of GRL intentional elements (e.g., LE1-E3
and LE1-E3

∆) would cause a conformance violation. If non-
conformance is detected, phase 4 takes place.

4.4 Phase 4: Metamodel Relaxation Inference

Based on the metamodel conformance violations detected in phase 3,

the modeler is now able to decide on two things: the extension type
and the extension point. Regarding the extension type, we have al-
ready discussed that in order to support model families (with large
numbers of models), we only need to relax the metamodel internal
constraints that are related to multiplicities of attributes and associa-
tion ends and/or external well-formedness constraints. Regarding the
extension point (precisely, the relaxation points), the current solution
provided by this heuristic is local. That is, it provides insights about

extension points related directly to the type of change detected in
phase 2, for specific models. However, if a new model is added to
M150, phases 2 through 4 need to be repeated again to detect new
changes and infer relaxation points in the metamodel. At this level, it
is still challenging to predict the exact locations (i.e., points) of met-
amodel multiplicities that need to be relaxed, independently of the
models in a family. We understand that we do not have to follow the
naïve brute-force approach and relax all multiplicity constraints and

external constraints in the metamodel. Instead, we need to identify a
technique to predict where relaxation is needed in the metamodel,

based on its structure and perhaps patterns of usages of the language.
By this, we could answer RQ2.

As an initial solution however, we suggest that the pairs of changes
detected in phase 2 along with the relaxation actions inferred in phase
4 can be profiled in a separate file, called Change Log (CL), such that
the CL will contain tuples in the form of <ChangeType, Relaxation-

Type>. Now, when a new model emerges, we can compare changes

introduced by this new model with ChangeTypes stored in CL. If any
similarity is detected, we can infer the type and point of relaxation
needed in the metamodel without going through phases 3 and 4. Al-
ternatively, based on a large collection of models, relaxation points
could be discovered empirically. How much human intervention is
required to infer relaxion points is still under study.

Figure 7. MeRe approach

5. ANALYSIS OVER 150% MODELS
This section is dedicated to the exploration of RQ3. As mentioned

previously, 150% models represent the union of all members of a
model family. 150% models do not only merge the family members,
but they also enable the extraction of the individual, original models.
To facilitate model extraction, we suggest that elements of the 150%
model be annotated with information about the possible variations in
a model family, such as type identifiers as suggested by Shamsaei et

al. [11] or presence conditions and meta-expressions as presented by

Czarnecki and Antkiewicz [8] The later annotations are defined in

terms of features and feature attributes from a feature model, and can
be evaluated with respect to a feature configuration, for instance, to
indicate whether or not a particular element has to be part of all or
some models. That is, a 150% model can be instantiated based on

feature configurations (these instances could be products, systems,
regulations, etc.).

The extraction of a particular individual model from the 150% model
could be important for analysis purposes. For example, instead of
examining models, from years 2007 to 2017, all at once, a decision
maker could be interested to view one model only (for example, the
model of 2013), to conduct a different kind of analysis over it. In
addition, the 150% model can be viewed as a single generic model
that combines old (i.e., legacy) models with the most recent models.
This option would facilitate the comparison among legacy systems
and current systems to infer reasoning about the current status of the

system (for example, in the regulatory domain) and also to anticipate
the future of such systems.

The reuse of analyses techniques and tools that already exist for the
original models to the context of the 150% model is also challenging.
For example, GRL models can be analyzed through satisfaction

propagation algorithms [16], but such algorithms would need to be

adapted to cope with the relaxed metamodel of the 150% model. A

naïve approach would be to extract all the models from the family
and then use existing algorithms and tools on them. A more interest-
ing approach would be to detect whether the metamodel relaxations
warrant modifications to the analysis algorithms. Yet another re-
search direction would be to consider “lifting” the algorithms, an

approach proposed by Salay et al. for model transformations [17].

Inspired by the data analytics domain [18], we also envision conduct-

ing several types of analysis over a model family (through 150%
models) to reason on all members of the family. Such analysis ap-
proaches include: 1) Descriptive analysis to describe the main aspects
or features of the models being analyzed. For example, this may de-

scribe how a regulatory model in a particular year differs from the
model of the next year. This allows one to make comparisons among
different models. 2) Exploratory analysis to analyze models to find
previously unknown relationships. This type of analysis is useful for
discovering new connections and to provide future recommendations.
3) Inference analysis to infer information about large population of
models based on a small sample of models. For example, examining
compliance level using a small sample of models to explain how well

the entire system complies with regulations and rules. 4) Predictive
analysis to analyze current and historical (or legacy) models to pre-
dict future happenings of events. The essence of such approaches is
to use data on some models to predict values for other models. 5)
Causal analysis to figure out what will happen to one or more models
when some model gets changed, e.g., to study the impact of changing
one or more rule in a particular regulatory model on the behavior of
other models in the family.

6. RELATED WORK
The literature suggests approaches to manage metamodel evolution
through studying the impact of metamodel evolution on models
and/or on operations (e.g., migration and transformations) and then
adapting models (or operations) to their evolving metamodel (as
illustrated in Figure 1). To handle metamodel and model co-
evolution, several approaches create difference models to calculate

the difference with the last evolved metamodel, such as in [19]. Then,

this difference model is used to derive automatic transformations for

co-evolution. Sprinkle [3],[20] proposed a visual graph transfor-

mation-based language in order to specify model migration between

two metamodel versions. Gruschko et al. [21], [22] classify primitive

metamodel changes into non-breaking, resolvable, and irresolvable

changes. Then, they provide automatic migration rules for non-

breaking and resolvable changes. Cichetti et al. [23] go a step further

and try to detect composite changes, e.g., extracting a class based on
the difference between metamodel versions. To adapt to metamodel
changes and migrate models, a number of high-level transformations

were proposed in [24]. These transformations are based on a generic

model that supports versioning for both models and metamodels. In
addition, several approaches have been proposed to (semi-)automate

transformation migration. In [25], Davide et al. present an approach

for the coupled evolution of metamodels and transformations. This
approach tries to assess the cost of a change and use this assessment
to infer transformation evolution (for instance, whether to make a
go/no-go decision to evolve transformations or not). These approach-
es are conceptually different from our approach. While they adapt

models (or operations) to their evolving metamodel, MeRe investi-
gates evolving metamodels in response to the evolution of models in
the model family context.

Metamodels can also be extended through the concept of profiles. A

well-known example is the UML.2x profile mechanism [14]. With

profiles, new constructs (stereotypes), properties (tagged values) and
modeling rules (constraints) are added to further restrict the meta-

model’s constructs and enforce the well-formedness of models of the
domain-specific language. Similarly, Ecore (the metamodeling lan-
guage of EMF) allows users to attach annotations on any element of a

metamodel to capture additional information [26]. Unlike MeRe

which relaxes a metamodel, these approaches either add new con-
cepts to the original metamodel, or modify the language’s validity

constraints by further constraining them instead of relaxing their
restrictions.

Model versioning approaches have also been proposed for model

evolution. The approach of Alanen and Porres [27] is one of the ear-

liest works on UML model versioning. In this approach, differences

between model versions are detected by calculating the created, de-
leted, and changed elements, and then by matching the unique identi-
fiers of these elements. Odyssey-VCS 2 is a version control system

for UML models [28]. It controls versioning by using state-based

differencing to detect elements between different versions of a mod-
el. The Adaptable Model Versioning (AMOR) is another model ver-

sion control system proposed by Altmanninger et al. [29], which

provides a mechanism for conflict detection between models by sup-
porting definitions of conflict resolution policies. In addition, AMOR
contains a recommender component that provides suggestions to
users on how to resolve the detected conflicts. Finally, Aprajita and

Mussbacher [30] explicitly extended the metamodel of GRL to doc-

ument explicit changes (additions/deletions) of model elements to

specific versions of a metamodel. Although a model family can then
be captured, this approach is specific to one language and currently
incomplete in the kinds of changes to versions it can accommodate.
Although these approaches handle model evolution and track it
through versioning, none of these approaches exploits model evolu-
tion as a trigger to evolve/extend the original metamodels to enable
conformance.

To manage uncertainty in MDE, Famelis et. al. [31], [32] proposed

the use of partial models as formal development artifacts to enable
the abstraction, reasoning, visualization and manipulation of possible
alternative models. In this approach, a set of alternative models with
uncertainty are merged and captured with one model called a partial
model. While the idea of capturing models in one partial model is

close to our idea of merging models of a family in one 150% model.
The context and the purpose of our work is still different. In a sense,
we do the merge for the sake of representing model families and

relax infer metamodels accordingly, while in [31] merging models is

done to describe the observable behaviour of a system.

Czarnecki and Antkiewicz [8] proposed a template-based approach

for mapping feature models to representations of variability in UML
models. The authors describe the concept of superimposed variants to
realize a negative variability, which corresponds to the 150% model
used in our approach. However, the purpose of using 150% models is
different in both approaches.

Finally, a variety of model evolution approaches have adopted the
key ideas from database schema evolution approaches, which deal
with the migration of database records to adapt to the evolution of the
database schema. Details about schema evolution approaches are
beyond the scope of this paper, but the interested readers can refer to

the work of Rahm and Roddick [33],[34]. While many of the ap-

proaches from schema evolution have been adapted for model evolu-
tion, one key consideration has yet to be fully addressed: if a data-

base record evolves, or a new record is added that is not already de-
fined in the database schema, then there is a need to evolve the sche-
ma to insure compatibility with the new record. This issue is analo-
gous to the model-triggered metamodel evolution problem investi-
gated in the paper.

7. CONCLUSION AND FUTURE WORK
This paper defines a technique that minimally relaxes metamodel

constraints to support both the original models as well as the 150%
model of a model family. The evolution scenarios illustrated in this
paper suggest that in order to support model families, the metamodel
constraints that need to be relaxed are mainly related to multiplicities
of association ends and attributes, and to external well-formedness
constraints (RQ1). Since our MeRe approach is solely based on light-
weight metamodel relaxation (instead of heavy-weight extensions
that require adding new concepts to the metamodel), its results are

promising in terms of enabling conformance with evolved models
with, ideally, as few changes as possible. However, ensuring minimal
relaxation by predicting where relaxation is needed in the metamodel
independently of the family members (RQ2) as well as evolving
analysis approaches for exploiting and coping with the 150% model
(RQ3) are still challenging issues that need to be addressed in our
forthcoming work. We hence invite the research community to inves-
tigate solutions to these important problems.

REFERENCES
[1] J. Whittle, J. Hutchinson, and M. Rouncefield. "The state of practice in

model-driven engineering." IEEE software vol. 31(3) pp. 79-85, 2014.

[2] R. F. Paige, D. S. Kolovos, and F. Polack, “A tutorial on metamodelling
for grammar researchers,” Science of Computer Programming, vol. 96,

pp. 396–416, December 2014.

[3] J. Sprinkle and G. Karsai, “A domain-specific visual language for
domain model evolution,” Journal of Visual Languages and Computing

vol. 15(3-4), pp. 291–307, 2004.

[4] G. Taentzer, F. Mantz, and Y. Lamo, “Co-transformation of graphs and
type graphs with application to model co-evolution,” in ICGT, LNCS,

vol. 7562, pp. 326–340. Springer, 2012.

[5] L. Rose, D. Kolovos, R. F. Paige, and F. Polack, “Model migration with
Epsilon flock,” in ICMT 2010, LNCS, vol. 6142, pp. 184–198. Springer,

Heidelberg, 2010.

[6] H. Konig, M. Lowe, and C. Schulz, “Model transformation and induced
instance migration: a universal framework,” in SBMF 2011. LNCS, vol.

7021, pp. 1–15. Springer, Heidelberg, 2011.

[7] A. Kusel, J. Etzlstorfer, et al., “A Systematic Taxonomy of Metamodel
Evolution Impacts on OCL Expressions,” in Models and Evolution

2014, CEUR-WS, vol. 1331, pp. 2–11, 2014.

[8] K. Czarnecki and M. Antkiewicz, “Mapping features to models: a

template approach based on superimposed variants,” in GPCE 2005,

LNCS, vol. 3676, pp. 422–437. Springer, Berlin, Heidelberg, 2005.

[9] A. Polzer, D. Merschen, G. Botterweck, A. Pleuss, J. Thomas, B.

Hedenetz, and S. Kowalewski, “Managing complexity and variability of
a model-based embedded software product line,” Innovations in Systems

and Software Engineering, 8(1), pp. 35–49, 2012.

[10] A. Palmieri, P. Collet, and D. Amyot, “Handling regulatory goal model
families as software product lines,” in Advanced Information Systems

Engineering-27th International Conference, LNCS, vol. 9097, pp. 181–

196. Springer, 2015.

[11] A. Shamsaei, D. Amyot, A. Pourshahid, E. Yu, G. Mussbacher, R.

Tawhid, E. Braun, and N. Cartwright, “An approach to specify and
analyze goal model families,” in 7th System Analysis and Modelling

(SAM) Workshop, LNCS, vol. 7744, pp. 347–52. Springer, 2012.

[12] ITU-T, Recommendation Z.151 (10/12) User Requirements Notation
(URN) - Language definition. Online: https://www.itu.int/rec/T-REC-

Z.151/en

[13] D. Amyot and G. Mussbacher, “User Requirements Notation: The first
ten years, the next ten years,” Journal of Software, 6(5), pp. 747–768,

2011.

[14] OMG, Unified Modeling Language (UML), Version 2.5, formal/2015-

03-01, 2015.

[15] J.E. Rivera and A. Vallecillo, “Representing and operating with model
differences,” in International Conference on Objects, Components,

Models and Patterns, LNBIP, vol. 11, pp. 141-160. Springer Berlin

Heidelberg, 2008.

[16] D. Amyot, S. Ghanavati, et al., “Evaluating goal models within the
Goal-oriented Requirement Language,” International Journal of

Intelligent Systems (IJIS), 25(8), pp. 841–877, August 2010.

[17] R. Salay, M. Famelis, J. Rubin, A. Di Sandro, and M. Chechik, “Lifting
model transformations to product lines,” in: 36th International

Conference on Software Engineering (ICSE 2014), pp. 117–128. ACM,

New York, 2014.

[18] CI&T, The Four Types of Analytics. http://www.ciandt.com/card/four-

types-of-analytics-and-cognition [online; accessed: April 22, 2017].

[19] A. Cicchetti, D. Davide, R. Eramo, and A. Pierantonio, “Meta-model
differences for supporting model co-evolution,” in Proceedings of the

2nd Workshop on Model-Driven Software Evolution (MODSE), pp. 1–

10, 2008.

[20] J. M. Sprinkle, Metamodel driven model migration. Doctoral

dissertation, Vanderbilt University, Nashville, USA, 2003.

[21] S. Becker, B. Gruschko, T. Goldschmidt, and H. Koziolek, “A process
model and classification scheme for semi-automatic meta-model

evolution,” in 1st Workshop MDD, SOA und IT-Management (MSI),

GI, GiTO-Verlag, pp. 35–46, 2007.

[22] B. Gruschko, D. Kolovos, and R. F. Paige, “Towards synchronizing
models with evolving metamodels,” in International Workshop on

Model-Driven Software Evolution, paper 3, 2007.

[23] B.A. Cicchetti, D. Ruscio, R. Eramo, and A. Pierantonio, “Automating
co-evolution in model-driven engineering,” in 12th International

Enterprise Distributed Object Computing Conference (EDOC), pp. 222–

231. IEEE Computer Society, 2008.

[24] J. Hößler, M. Soden, and H. Eichler, “Coevolution of models,

metamodels and transformations,” in Models and Human Reasoning,

Wissenschaft und Technik Verlag, pp. 129–154, Berlin, 2005.

[25] D. R. Davide, I. Ludovico, and A. Pierantonio, “A methodological

approach for the coupled evolution of metamodels and ATL
transformations,” in ICMT 2013: Theory and Practice of Model

Transformations, LNCS, vol. 7909, pp. 60–75. Springer, Berlin,

Heidelberg, 2013.

[26] P. Langer, K. Wieland, M. Wimmer, and J. Cabot, “EMF profiles: a

lightweight extension approach for EMF models,” Journal of Object

Technology, vol. 11, no.1, pp. 1–29, April 2012.

[27] M. Alanen and I. Porres, “Version control of software models,” in

Advances in UML and XML-Based Software Evolution, Chapter III, pp.

47–70. Idea Group Publishing, 2005.

[28] H. Oliveira, L. Murta, and C. Werner, “Odyssey-VCS: a flexible version
control system for UML model elements,” in Proc. 12th Int. Workshop

on Software Configuration Management, pp. 1–16. ACM, 2005.

[29] K. Altmanninger, G. Kappel, et al., “AMOR – towards adaptable model
versioning,” in 1st International Workshop on Model Co-Evolution and

Consistency Management (MCCM'08), Workshop at MODELS'08,

Toulouse, France, 2008.

[30] Aprajita and G. Mussbacher, “TimedGRL: Specifying goal models over

time,” in 6th Int. Model-Driven Requirements Engineering Workshop

(MoDRE), pp. 125–134. IEEE CS, 2016. doi:10.1109/REW.2016.035.

[31] M. Famelis, S. Ben-David, M. Chechik, and Rick Salay. "Partial

models: A position paper." In Proceedings of the 8th International
Workshop on Model-Driven Engineering, Verification and Validation,

p. 1. ACM, 2011..

[32] M. Famelis, R. Salay, and M. Chechik. “Partial models: Towards
modeling and reasoning with uncertainty". In proceedings of ICSE, pp.

573–583, 2012.

[33] E. Rahm and P.A. Bernstein, “A survey of approaches to automatic

schema matching,” VLDB Journal, vol. 10, no. 4, pp. 334–350, 2001.

[34] J. F. Roddick, “A survey of schema versioning issues for database
systems,” Information and Software Technology, vol. 37, no. 7, pp.

383–393, 1995.

