
Analyzing Behavioral Refactoring of
Class Models

Wuliang Sun, Robert B. France, Indrakshi Ray

Computer Science Department

Colorado State University

Fort Collins, Colorado

1

The Models and Evolution (ME) workshop

colocated with the 16th MODELS, Miami, USA

Introduction

 Evolving class models in the Model-Driven
Development (MDD) projects

 Software refactoring
 Goal: achieve maintainability, extensibility, etc.

 Existing class model refactoring techniques
 Lack support for refactorings that involve making

changes on operation specifications

2

Introduction

 Behavioral refactoring
 Changes on operation specifications

 E.g., add, remove, modify specifications

 Source model

 Refactored model

 Net effect of an operation

 Essential behavior

 Specified using the pre-/post-conditions expressed in
the Object Constraint Language (OCL)

3

Motivation

 Source model
 FlightManager::bookFlight()

 Refactored model
 Airline::getAvailableFlights()

 Flight::getAvailableSeats()

 Flight::reserveSeat()

 FlightManager::bookFlightTicket()

 Checking
 If the net effect of FlightManager::bookFlight() is

preserved by the operations in the refactored model

4

Contribution

 Checking behavioral refactoring that involves
making changes on OCL operation
specifications

 Tool support based on the Alloy Analyzer
 UML-to-Alloy transformation

 Lightweight analysis
 Shield the modeler from the back-end use of the

Alloy Analyzer

 The net effect preservation analysis is checked within
a bounded domain

5

Approach Overview

6

 Net effect preservation
 OpSeq = [Op1; Op2; ...; OpN] in the refactored model

 Op0: an operation in the source model

 OpSeq preserves Op0 if
 The start states associated with the pre-condition of

Op0 is included by that of OpSeq

 The ending states associated with post-condition of
Op0 is included by that of OpSeq

Approach Overview

7

 Op0 is preserved by the refactoring if there
exists OpSeq
 OpSeq starts in all the states that satisfy the pre-

condition of Op0

 OpSeq

 Starting in a state satisfying the Op0 pre-condition

 Ending in a state satisfying the Op0 post-condition

Approach Overview

8

Approach Overview

9

Approach

10

 First step: check that the elements referenced
in the Op0 operation specification also appear
in the refactored model

 Second step: generate an Alloy model using
class model-to-Alloy and OCL-to-Alloy model
transformation

 Third step: produce an Alloy predicate from
Op0 and sequence diagram

 * More details of the approach can be found in a technical report. See the link below

http://www.cs.colostate.edu/TechReports/Reports/2013/tr13-104.pdf

Case Study – Maze Game

11

Case Study – Maze Game

12

Case Study – Maze Game

13

Case Study – Maze Game

14

Case Study – Maze Game

15

Case Study – Maze Game

16

Case Study – Maze Game

17

Case Study – Maze Game

18

Case Study – Maze Game

19

 Checking if a given sequence preserves
createBombedMaze
 E.g., an operation invocation sequence =

 [createMaze; makeMaze; makeRoom; addRoom; makeWall;
addWall; makeWall; addWall; makeWall; addWall; makeWall;
addWall]

 Analysis result: createBombedMaze is
preserved by the given sequence

Conclusion and Perspective

20

 Limitation of the approach
 OCL-to-Alloy transformation

 Checking the Op0 referenced elements in the
refactored model

 Future work
 Use SMT solvers (e.g., Microsoft Z3) for the analysis

 Explore the mappings between equivalent source and
refactored models

*Acknowledgment: the work was supported by the National Science

 Foundation grant CCF-1018711.

Related Work

21

 E. Gamma, H. Richard, J. Ralph, and V. John. Design
patterns: elements of reusable object-oriented software.
Reading: Addison-Wesley Publishing Company, 1995.

 M. Fowler and K. Beck. Refactoring: improving the design of
existing code. Addison-Wesley Professional, 1999.

 D. Jackson. Alloy: a lightweight object modelling notation.
ACM TOSEM, 2002.

 R. France, S. Chosh, E. Song, and D.K. Kim. A metamodeling
approach to pattern-based model refactoring. IEEE Software,
2003.

 P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer. Towards
automating source-consistent uml refactorings. UML, 2003.

 W. Sun, R. France, and I. Ray. Rigorous analysis of UML
access control policy models. In Proceedings of the POLICY,
2011.

Thanks for your attention!

Any Questions?

22

