
Analyzing Behavioral Refactoring of
Class Models

Wuliang Sun, Robert B. France, Indrakshi Ray

Computer Science Department

Colorado State University

Fort Collins, Colorado

1

The Models and Evolution (ME) workshop

colocated with the 16th MODELS, Miami, USA

Introduction

 Evolving class models in the Model-Driven
Development (MDD) projects

 Software refactoring
 Goal: achieve maintainability, extensibility, etc.

 Existing class model refactoring techniques
 Lack support for refactorings that involve making

changes on operation specifications

2

Introduction

 Behavioral refactoring
 Changes on operation specifications

 E.g., add, remove, modify specifications

 Source model

 Refactored model

 Net effect of an operation

 Essential behavior

 Specified using the pre-/post-conditions expressed in
the Object Constraint Language (OCL)

3

Motivation

 Source model
 FlightManager::bookFlight()

 Refactored model
 Airline::getAvailableFlights()

 Flight::getAvailableSeats()

 Flight::reserveSeat()

 FlightManager::bookFlightTicket()

 Checking
 If the net effect of FlightManager::bookFlight() is

preserved by the operations in the refactored model

4

Contribution

 Checking behavioral refactoring that involves
making changes on OCL operation
specifications

 Tool support based on the Alloy Analyzer
 UML-to-Alloy transformation

 Lightweight analysis
 Shield the modeler from the back-end use of the

Alloy Analyzer

 The net effect preservation analysis is checked within
a bounded domain

5

Approach Overview

6

 Net effect preservation
 OpSeq = [Op1; Op2; ...; OpN] in the refactored model

 Op0: an operation in the source model

 OpSeq preserves Op0 if
 The start states associated with the pre-condition of

Op0 is included by that of OpSeq

 The ending states associated with post-condition of
Op0 is included by that of OpSeq

Approach Overview

7

 Op0 is preserved by the refactoring if there
exists OpSeq
 OpSeq starts in all the states that satisfy the pre-

condition of Op0

 OpSeq

 Starting in a state satisfying the Op0 pre-condition

 Ending in a state satisfying the Op0 post-condition

Approach Overview

8

Approach Overview

9

Approach

10

 First step: check that the elements referenced
in the Op0 operation specification also appear
in the refactored model

 Second step: generate an Alloy model using
class model-to-Alloy and OCL-to-Alloy model
transformation

 Third step: produce an Alloy predicate from
Op0 and sequence diagram

 * More details of the approach can be found in a technical report. See the link below

http://www.cs.colostate.edu/TechReports/Reports/2013/tr13-104.pdf

Case Study – Maze Game

11

Case Study – Maze Game

12

Case Study – Maze Game

13

Case Study – Maze Game

14

Case Study – Maze Game

15

Case Study – Maze Game

16

Case Study – Maze Game

17

Case Study – Maze Game

18

Case Study – Maze Game

19

 Checking if a given sequence preserves
createBombedMaze
 E.g., an operation invocation sequence =

 [createMaze; makeMaze; makeRoom; addRoom; makeWall;
addWall; makeWall; addWall; makeWall; addWall; makeWall;
addWall]

 Analysis result: createBombedMaze is
preserved by the given sequence

Conclusion and Perspective

20

 Limitation of the approach
 OCL-to-Alloy transformation

 Checking the Op0 referenced elements in the
refactored model

 Future work
 Use SMT solvers (e.g., Microsoft Z3) for the analysis

 Explore the mappings between equivalent source and
refactored models

*Acknowledgment: the work was supported by the National Science

 Foundation grant CCF-1018711.

Related Work

21

 E. Gamma, H. Richard, J. Ralph, and V. John. Design
patterns: elements of reusable object-oriented software.
Reading: Addison-Wesley Publishing Company, 1995.

 M. Fowler and K. Beck. Refactoring: improving the design of
existing code. Addison-Wesley Professional, 1999.

 D. Jackson. Alloy: a lightweight object modelling notation.
ACM TOSEM, 2002.

 R. France, S. Chosh, E. Song, and D.K. Kim. A metamodeling
approach to pattern-based model refactoring. IEEE Software,
2003.

 P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer. Towards
automating source-consistent uml refactorings. UML, 2003.

 W. Sun, R. France, and I. Ray. Rigorous analysis of UML
access control policy models. In Proceedings of the POLICY,
2011.

Thanks for your attention!

Any Questions?

22

